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Abstract 

In studying Pfk -I = 0, gii'k = 0 field theory we require that the underlying structure 
(P#7,ga#) be mvanant . . . . .  under L(4), the four-dgnenslonal Lorentz group. This can be 
accommodated into the theory by increasing the dlmensmn to five. In our computer 
studies we still found a turnabout point for g44 on running down the x-axis, suggesting 
that this group may be consistent with a bounded particle. However, with still longer 
runs down the x-axis, there was some indication that a singularity may be developing. 

1. Introduction 

We have been able to obtain particle-like behavior by combining 'aesthetic' 
data at the origin with 'aesthetic' field equations (Muraskin, 1973a, 1973b; 
Muraskin & Ring, 1973, 1974a). The a, ~ variables in those papers were 
required to be invariant under space-time groups associated with Newtonian 
physics. It is a reasonable question to ask what sort of results we would get 

Ot if instead we require P#7, ga# to be invariant under the Lorentz group. We 
shall find that such invariance is consistent with Plea = O, gij;k = 0 in five- 
dimensional space. In the computer runs we have made, we found a bound 
on g44. However, still longer runs showed some indication that singularity 
may be developing. 

We consider 

We choose  

2. Lorentz lnvariant Data 

(2.1) 

go, t3 = (1, 1, 1 , - 1 ,  1) (2.2) 
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(we get no significant differences on the computer if we choose ga~ = ( I ,  1, 1, 
- 1 , 0 ) )  and 

¢1 = ¢2 = ¢3 = ¢4  = 0 

1.~ = b ~  

X~ = c¢~ 
Xa = dCa (2.3) 

~ = Ca = 0 a  

#sXsXs = - 2 ¢ s  

Then, ga~, Pa~,  obey the Rjkl v a 0 integrabiIity equations. We note Pa~, is, 
thus, symmetric in all indices. We could have taken, say, Ca g= Ca and still 
have found that integrability would be satisfied. However, in view of  the fact 
that Pa~v is already not completely general, since it does not have any com- 
pletely antisymmetric part, it seemed more reasonable to further restrict 
ourselves to a completely symmetric Fat~ v. We note in Muraskin (1974) a 
completely symmetric Fa~ v was studied. Also in Muraskin (1974) we did not  
find any obvious usefulness for the antisymmetric part in connection with 
O(3)-type theories. 

We see that  (2.1) and (2.2) are invariant under four-dimensional Lorentz 
transformation. In order to get a Lorentz invariant Fao v we were led to five 
dimensions as we do not  see how we can get invariance in four dimensions. 

We have mentioned above that there is no non-vanishing completely anti- 
symmetric contribution associated with (2.1). Such a term would need to have 
the structure 

BXCXexxat>y (2.4) 

But to construct a form invariant under L(4)  would require B x to be zero if 
X ¢ 5 and C x to be zero for × @ 5. That is, we construct a L(4) invariant 
I ' ~ . f  from a vector of  structure (0, 0, 0, 0, a) and a g ~  of  structure (1, 1, 1, 
- 1 ,  b). Now, ifX = X = 5, we see from the properties of  the antisymmetric 
symbol that (2.4) is equal to zero. 

We chose in our computer runs the following values for the non-vanishing 

P ~  r l s  = p2s = Pas = F4s = PSss = 1 

Pl  1 = r22 = p3a = r 4 4  = 1 ( 2 . 5 )  

Ps I = Ps 2 = rSaa = -Ps44 = 1 

We calculated e41, e42, e 4 in the manner of  Muraskin (1971) and obtained a 
maximum in g44 at the origin using 

e l l  = 0.9 e12 = - 0 - I 3  e13 = - 0 . 1 8 7  e14= - 0 . 0 3 4  e15 = 1.2 

e2a = 0-21 e22 = 0.5 e23 = - 0 . 2 4  e24= 0-017 e2s = 0-082 

e31 = - 0 . 1 7  e32 = - 0 . 2 6  e33 = 0 - 6 5  e34 = --0"042 eas = 0.29 

e44 = --0-71 e45 = 0-51 

esl = --0.05 eS2 = --0-04 e53 = --0.038 e54 = 0.22 eSs = 1-01 

(2.6) 
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The calculation yielded 

e41 = - 0 . 0 4 4 4  e 4 = -0 -0915  e 4 = - 0 . 0 1 9 8  

These numbers have been rounded off here. 
Running the computer down the x-axis we found the following values for 

g44 and gss. 

x g44 gss 

0 - 0 . 4 5  2.29 
0-5 - 0-55 7-46 
1.0 - 1 . 1 7  16.0 
1-05 - 0 . 6 4  515 
1-06 - 0 - 1 8  686 
1.075 1.37 1,I55 
1.093 8.12 2,801 
1.105 28.50 7,085 
1.1115 70-88 15,314 
1.114 110.91 22,820 

We see that goo stopped decreasing at about x = 1.0 but then began to increase 
quite dramatically in magnitude, gss was already so large at x = 1.114 that 
running on the computer was discouraged. The computer cannot tell us that 
a singularity is present. However, the suggestion that this may be happening 
is there. We did not notice anything particularly encouraging about the behavior 
of  lPjk during the run. We graphed 12 of  the t 25 components of  lP/k during 
tile run and found a net total of  one turnabout point (in Pl l ) .  It may well be 
that L(4) symmetry can lead to a bounded particle but with a singular structure 
outside the particle. No amount of  running on the computer can prove this 
contention but it seems like a reasonable tentative supposition. 

Thus we feel that L(4) invariant data gives no indication, at present, of  
leading to an improvement over previously obtained results. 

3. Other Five-Dimensional Runs 

We took the 0 (3 )  invariant R}gt ~ 0 data appearing in Muraskin (1973b) 
and required that F~. r be zero when ~,/3 or 3' took on the value 5. Thus, we 
may say that we have a four-dimensional substructure in a five-dimensional 
space. The results were then compared with the four-dimensional version of  the 
data. We found that when eSi and e~s were small, the results for~F]g, i,], k = 
1-4, differed slightly at the origin. After a long run down an axis we found 
that the five-dimensional and four-dimensional results approached one another 
for F]k, i,], k = 1-4. This was the same kind of  results we had obtained in our 
eight-dimensional studies (Muraskin & Ring, 1974b). Thus, the higher dimen- 
sions do not lead to any improvement in this case. We also considered the 
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same five-dimensional data above, but with P~s = 1 instead of zero. We found 
again that the four-dimensional and five-dimensional results approached one 
another. 

We also tried the four-dimensional data appearing in Muraskin & Ring 
(1974b), having all invariants zero, and extended the data to five-dimensional 
space as above. Here the four-dimensional and five-dimensional data did not 
approach one another. We have (Muraskin & Ring, 1974b) pointed out that 
the four-dimensional data has singular structure. We found that the five- 
dimensional run did not appear to show any new effects so far as we could 
tell. Our tentative contention is that the five-dimensional run also has a 
singular structure. Note, we drew a similar contention when the same four- 
dimensional data was extended to eight-dimensions in Muraskin & Ring 
(1974b). 

4. Summary 

In attempting to improve our previous results, it is necessary to explore 
as many reasonable alternatives as we can think of. There is some indication 
from the computer that requiring Fffv,g~ be invariant under the Lorentz 
group L(4) may well lead to a singular structure. We were able to obtain 
invariance under L(4) by increasing the dimensions to five. Other five- 
dimensional runs that we made did not appear to differ from the type of 
results we had in our eight-dimensional studies. Thus, we cannot say that our 
results are an improvement upon those of the past. 
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